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Abstract—Existing techniques of rock-joint modelling are reviewed. It is concluded that no
methods presently in use are acceptable as either realistic models of mating rock joints or as
mass production methods for the development of large, highly jointed models of rock masses.

A method is described for producing mating tension fractures in a weak, brittle model material
using a large guillotine device. Parallel sets of model joints can be produced which are continu-
ous, cross-jointed or offset (stepped) depending upon the chronological order of fracturing. The
direct shear properties of these three types are compared and evaluated. The model results are
used as a basis for predicting the full-scale (1:500) displacements accompanying shear failure
of a 96-ft long prototype tension joint.

Recent numerical modelling of jointed rock masses has been based on assumed values of the
shear and normal stiffness of the joints. These components are found to dominate the elastic
deformation properties of the intact rock. The results of shear and normal stiffness tests on the
model joints are used for a careful assessment of these quantities. The shear stiffness (peak shear
stress per unit tangential displacement) is found to be both normal stress and size dependent,
and this is confirmed by a survey of shear-test data for joints in rock. There appears to be an
inverse proportionality between test dimension and shear stiffness, for a given normal stress.
The normal stiffness (normal stress per unit closure) is found to be dependent on the preconsoli-
dation or virgin normal stress level.

The problems of simulating the behaviour of jointed rock masses by the finite-element method
are reviewed. Two particular drawbacks seem to be the conservation of energy demanded
during computation, and the computer storage problems involved in modelling dilatent joints.
Both these features are of fundamental importance to rock-mass deformation. A move towards
realistic physical modelling is considered essential to an understanding of real processes.

INTRODUCTION

IT 1s coMMONLY believed that stress concentrations exist around the toe of steep rock slopes.
This belief is the result of numerical elastic stress distributions, in which the assumption is
made that the joints that exist do not deform, and therefore do not alter the elastic stress
system. Recent numerical and physical model studies have thrown considerable doubt on the
relevance of such assumptions. In fact, for numerical or physical model analyses to be
realistic, attention has to be paid to the strength and deformation properties of the joints,
almost to the exclusion of the intact rock between the joints.

This difficult problem has now been partially solved using more sophisticated finite
element and difference techniques (GOODMAN et al. [1], MAHTAB and GOODMAN [2], ZIEN-
KIEWICZ et al. [3], ST JouN [4] and CunpALL [5]). However, the fundamental problem of
realistic input data has not been adequately tackled and the numerical analyses fall short
of reality as a result.

Unfortunately, in situ shear tests and plate-jacking tests are extremely expensive and time
consuming. In addition their relevance is in question since it is not certain what test dimen-
sions are most relevant to a given problem. It is believed that useful guidelines can be
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supplied by realistic physical models, and at only a fraction of the cost. A limited and more
specific in situ programme can be planned as a result. This paperwas written with this aim in
mind.

The shear characteristics of interlocking rock surfaces are dependent to a large extent
on several phenomena of intact rock failure. It would seem therefore that a realistic model
material must first scale the properties of intact rock. If geometrically scaled joint surfaces
can then be produced in the model material, there is a good chance of correct scaling of the
discontinuous properties which, taken separately, are far more important in rock engineer-
ing than the intact properties, but in reality are inseparably linked to them. Two features
of particular importance have to be considered, when producing artificial model joints.

Firstly, direct shear characteristics for the joints showing an ‘unstable’ mode of failure
rather than a ‘stable’ mode have to be created by some means. That is to say, a graph of
shear strength vs shear displacement is required which shows a marked drop from a peak
strength at small displacements to a lower residual strength at large displacements. This
would be in direct contrast to one showing stable characteristics in which the maximum
strength is reached followed by unchanging shear resistance with increasing shear displace-
ment. The contrasted effects of these two modes on the progressive failure of a rock slope
is an obvious illustration of their importance.

Secondly, when an unstable mode of failure has been successfully simulated, the techni-
que involved must be critically examined for its practical possibilities. A recent study of
rock-slope behaviour was performed using a large ‘two-dimensional’ jointed model (BARTON
[6]). Before each model was constructed four days were spent in generating joint sets through
intact 1-in. thick slabs of the model material. Approximately forty thousand discrete blocks
were produced in this short period and this of course implies that some mass-production
technique was employed. In addition, the joints could be generated in parallel sets in any
desired direction, so as to intersect previous sets at any angle.

Previous methods of joint simulation

A most comprehensive review of rock mechanics modelling was published by StiMpsoN
[7]. It is apparent that joint modelling has received a minimum of attention in the past. Of
the limited number of techniques in use, many are suspect from several points of view.

The simplest technique which is widely used is to cast discrete blocks of model material
in smooth-sided moulds. When these are cured the prototype structure is simulated by
packing the blocks into a model loading frame, usually in the form of a ‘two-dimensional’
wall. A regular packing is most frequently employed, such that two orthogonal ‘joint sets’
are produced.

The next logical step is to find some means of varying (increasing) the frictional properties
of the smooth-mating block faces. Several authors have reported the variable angle of
friction that can be achieved by inserting various materials between the flat faces of cast
bricks or layers of the model material. FUMAGALLI [8] has achieved friction angles as high
as 40-46° by inserting sand of various grain sizes. However, it would appear that this might
tend to produce a markedly stable joint behaviour rather similar to the residual of rock
joints. This residual strength is largely controlled by sliding and rolling in the intermittent
bed of debris which builds up between shearing surfaces after large displacements.

LADANYI and ARCHAMBAULT [9] and KrsMANoOVIC ef al. [10] tackled the problem of joint
roughness rather more directly. Imbricated (stepped) surfaces were produced by inter-
locking the model bricks. These could be set at various angles and with various heights of
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step. Total ‘“friction angles’ of between 40 and 60° were obtained by the second authors.
These angles were dependent on both the height of the steps and the normal stresses. How-
ever, it seems likely that this form of joint would tend to produce some cohesion intercept
when the direction of shearing was against the steep sides of the blocks. No details were
given of this directional dependence.

PaTTON [11] produced interlocking teeth joints by casting directly against moulds with
teeth. These teeth, ranging from 15 to 45° inclination and with 90° ends, produced his well-
known bilinear approximation to peak shear-strength envelopes, and obvious drops from
peak to residual strength. None of the above methods seem to be practical possibilities
where large, highly jointed models are required.

Tension fracture method of joint simulation

The method to be described in this paper was accidentally conceived. It was found that a
new, weak brittle model material could be split into rough fractures extremely easily, when
cast blocks were gently tapped with a chisel. The realistic intact properties of this model
material were chiefly to blame for this discovery, and they will be very briefly described.
(A detailed report of the mechanical properties of the material has been published elsewhere
—BARTON [12]).

The material is formed from an oven-cured combination of red lead-sand/ballotini-
plaster—-water. Unconfined compression strengths (o) as low as 5 Ibf/in? can be obtained,
and the Brazilian tensile strengths (o) range from one-seventh to one-tenth of the com-
pression strengths. The axial load—-deformation curves are typically flat ‘S’ shaped, with
failure occurring in a brittle manner at an axial strain (¢ %) which can be varied from ap-
proximately 0:25 to 0-45 per cent. The modulus ratio (E/o.) can also be varied at will,
within the range 350-560. The Mohr rupture envelopes for a range of confining pressure
from 0 to 3-5 1bf/in? were typically curved in shape, and the shear strength could also be
varied by using different ratios of sand/ballotini. A ratio of 100:0 produced a markedly
steeper Mohr envelope than a ratio of 0:100 of the frictional component. The high-density
red-lead filler gave a curved density (p) of between 120 and 125 1bf/ft3, roughly four fifths
that of rock.

The particular compound used in the model study referred to earlier was termed C3.
Choosing a geometric scale (A) of 1 to 500, the resulting stress scale (¥) for a gravitationally
loaded model is approximately 1 to 666, assuming a prototype density of 160 1bf/ft3. The
model-prototype mechanical properties can be summarized as follows:

TABLE 1. MODEL-PROTOTYPE PROPERTIES OF MATERIAL C3

Symbol Model (C3) Units Prototype
oc 20-1 1bf/in? 13,400
o 2-4 1bf/in? 1600
E 1-07 x 10* Ibf/in? 7-13 x 108
€ 0-31 % 0-31
121-2 1bf/ft3 160

The properties of most relevance to easy tensile splitting are the low tensile strength (2-4
Ibf/in?) and the relative brittleness, which is reflected in the realistic axial strain at failure
(0-31 per cent).
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Initially a small guillotine was designed on classic French principles. This could generate
tension fractures through small rectangular blocks of the model material, using the mom-
entum of a single falling blade. The experience gained was used in the design of the large
guillotine shown in Fig. 1. This has two opposed parallel blades which are driven to strike
simultaneously the top and bottom surface of a 1-in. thick slab, placed on the slotted table.
After each fracture the slab and slotted table are translated exactly 4 in. in a direction per-
pendicular to the common blade tracks. When the electrically driven blades are next
operated, a second fracture is generated parallel to the first, and % in. away. This simple
principle is illustrated in Fig. 2.

F1G. 2. Section showing the splitting mechanism and the typical non-linearity of the fractures.

Figure 3 shows six sequence photographs of a 16-in. square, I-in. thick slab being split
into one, two and finally three sets of parallel fractures. The slab is thereby split into
approximately 2000 separate blocks. The whole operation takes only 1 hr.

Model fracture genesis

The tension fractures are generated as a result of slight extension caused by limited surface
penetration of the opposed 60° blades. (This is carefully controlled.) The fractures are in
fact slightly open after they are formed. Measurements have indicated that when orthogonal
joint sets are developed parallel and perpendicular to the slab edges, an increase in the
dimensions of approximately 1 per cent occurs. In other words a slab of dimensions 16 in.
X 16 in. X 1in. when cast, becomes 16-15in. x 16-15in. X 1 in. when jointed symmetri-
cally in two directions, at % in. spacing. This means that 31 fractures have a total width of
0-15 in. and therefore each model joint is approximately 0-005 in. wide when in this (almost)
unstressed state. As will be seen presently, these gaps close irrecoverably under normal
stress, and the jointed model then deforms in direct response to its subsequent loading
history.

A feature of great interest is that the first joint set (primary) to be developed through a
slab is the only set which has continuous, unbroken fractures. Each subsequent set (second-
ary, tertiary, etc.) is offset where it crosses a pre-existing fracture. This is contrary to the



FiG. 1. The large guillotine used for generating model joint sets through slabs of the model material.
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Fi1G. 4. The model joint surfaces produced by three intersecting joint sets,
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FiG. 6. The surface damage caused by shearing at different normal
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impression created by the straight blade marks on the surface of the slabs. Figures 4 and 5
illustrate these internal features. Secondary joints are offset wherever they cross primary
joints, and tertiary joints are offset when crossing both primary and secondary joints. This
means that three fundamentally different joint characters are modelled. The use of other
intersection angles will add to the variety.

FiG. 5. Sections illustrating the offsets of secondary and tertiary joints.

The genesis and description of rock joints is a controversial topic among structural
geologists. However, it can be said with certainty that joints can develop at practically all
ages during a rock’s history. Denudation and isostatic uplift can cause gradual but dramatic
changes in the external stress environment, and in combination with the stored strain
energy of the rocks, the development of both tension and shear joints can be explained
(Price [13]). It is certainly difficult to envisage that all joint sets are the direct result of
tensile stresses acting perpendicularly to the joint planes, since it would be necessary to
postulate a complex and changing stress system to account for each set of joints. The feature
which is difficult to explain is the lack of displacement across shear joints. The plume struc-
tures which occur on many of such joints have delicate relief, and any significant differential
movement along the joints would completely obliterate the markings.
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It would seem that the jointed model can provide a very realistic simulation of the fol-
lowing structural system. The primary continuous joints, which are not offset when inter-
sected by subsequent joints, can be regarded as a set of master shear joints which, because of
continuity exhibit the lowest shear strength. The secondary and tertiary joints are clearly
tension joints and their offset, stepped nature means that their shear strength is consider-
ably higher. It weuld appear that a tension fracture cannot propagate perfectly (without
offset) across a pre-existing fracture, unless the latter is tightly closed as a result of a
favourable stress system.

Before presenting detailed results of the strength—deformation properties of these model
tension joints it is wise to record the areas of doubt surrounding one or two aspects of the
scaling. The controversial results which are to be presented can then be viewed in a more
objective and informed manner.

1. The model roughness is considerable and should be scaled up and interpreted accord-
ingly. Large-scale exposures of joints having lower degrees of roughness will have
reduced strength and deformation chatacteristics compared to the model prediction.

2. The model joints are completely free of soft infilling material, unlike many joints
encountered in field excavations. Likewise the joint walls are fresh fractures and are
therefore unaltered by weathering.

DIRECT SHEAR TESTS OF MODEL TENSION JOINTS

A standard soil mechanics range, 6 X 6-cm shear box was used for all the shear tests.
However, two small modifications were required for testing model joints. Firstly, the two
split halves of the shear box were separated by a § in. strip of P.T.F.E. (Teflon) low-friction
compound. Single, primary tension joints were generated in rectangular blocks of the model
material, such that the mean horizontal joint plane lay within the gap between the separated
halves of the box. Secondly, a light duralumin platen, loading yoke, four wires and hanger
were substituted for the conventional normal load device. The latter was heavy enough to
cause compressive failure of the weakest model material, even without additional weights.
In view of the low strength of the model joints, the proving ring used for applying and
measuring the shear force can be considered as an extremely stiff system. It was possible
to follow all the post-peak behaviour accurately.

TABLE 2. MODEL-PROTOTYPE SHEAR TEST PARAMETERS

Parameter Model Prototype Scale
Dimension 2-32 x 1-00(in.) 96 x 42(ft) A = 500
Total

displacement 0-18(in.) 7-5(ft) A = 500
Rate of shear 0-046 (in/min) 1-03 (in/min) =225
Normal stress (Ibf/in?) (Ibf/in?)

1 0-044 29-3

2 0-168 112

3 0-286 191

4 0-477 318

5 0-668 445 ¥ = G
6 0-954 635

7 1-620 1080

8 2-383 1589 J
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Figure 6 illustrates sixteen pairs (upper and lower mating halves) of rectangular shear
specimens which had previously been sheared at a variety of normal stresses. The lowest
stress was applied to specimens P.C.1 and P.C.2, and the highest to specimens P.C.15 and
P.C.16. The ultimate shear displacement was 0-18 in. which represented 77 per cent of the
total length of each specimen. The previous table compares the model and prototype
test parameters, for an assumed geometric scale (A) of 1:500.

The lowest normal stress was applied by nothing more than the weight of the upper half
of the block lying above the tension joint. This represented model and prototype ‘over-
burdens’ of 0-63 in. and 26 ft respectively. As a result of this low stress virtually no shear
damage could be detected. (See specimens P.C.1 and P.C.2, Fig. 6.)

Strength envelopes of three model tension joints

The inset to Fig. 7 illustrates three types of tension joint which can be generated on the
large guillotine. It was of interest to see if there was any difference in shear strength between
a single primary joint, and one with cross joints generated after the primary joint. (These
have been termed: primary cross-jointed P.C.J.) A greater strength was obviously to be
expected of the purely secondary joint, with its characteristic offsets.
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FiG. 7. The shear-strength envelopes of three tension-joint characters in model material C3.

Each point plotted in Fig. 7 is the mean of two tests conducted at the same normal stress.
The angle of friction of 56° and the cohesion intercept of 0-08 Ibf/in? are tentative, linear
approximations to the lower part of the peak-strength curve for the continuous primary
joints. It has been convincingly demonstrated that even for joints as rough as those tested,
no true cohesion exists, the peak-strength envelope merely becoming tangential to the ordi-
nate at the origin (BARTON [14]). However, secondary joints with perpendicular cross joints
obviously will have cohesion, and a value of approximately 0-2 Ibf/in? is indicated.

The ultimate curves demonstrate that a shear ‘strain’ of 7-7 per cent (0-18 in. displace-
ment) is insufficient to reach the true residual strengths. In fact a series of residual tests on
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flat surfaces of the same model material gave a mean friction angle of 284°. In practice it is
difficult to see how a rough tension joint can have its shear strength reduced to around 30°
by the mechanism of increased shear displacement, unless the normal stress is extremely
high. Weathering and alteration of the joint walls might be required if true residual strength
is to be reached under low levels of normal stress.

Figure 8 illustrates the effect of normal stress on the relative drop from peak to ultimate
strength. The interlock effect in the secondary joint surfaces is clearly shown by the large
ratio (16+6:1) of peak to ultimate strength at the lowest normal stress. The curves appear to
become asymptopic to a ratio of 1:1 as the normal stress increases. This might be expected
at extremely high stresses, when the presence of joints has limited effect on the strength and
deformation.
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FiG. 8. The ratio of peak to ultimate strength as a function of normal stress for three tension joints in model
material C3.

Shear force—displacement relationships

Figures 9 and 10 illustrate the magnitudes of the normal and tangential displacements
which accompany shear failure. It will be noted that in each case the predicted prototype
displacement is given on a scparate scale at the top of each figure. The curve numbering
(1-8) signifies the normal stress applied in each case, which was listed in T able 2.

It is customary to expect peak tangential (horizontal) displacements of less than } in.
even for in situ shear tests. (See comprehensive review article by Goopman [15].) It will
therefore be of some surprise to find predicted peak displacements for a 96 x 42 ft prototype
joint, ranging from about 5 to 15 in. However, when it is realized that the hypothetical
joint dimension is almost an order of magnitude greater than the largest in situ tests per-
formed, the large displacements become more realistic. Their relevance to in situ conditions
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Fic. 9. Shear force—displacement and dilation characteristics for primary tension joints in model material C3.

will depend primarily on the joint roughness ‘waveform’ found in the field. A roughness of
long wavelength which might be typical of a tension joint in granite can be expected to
induce much larger displacements before failure (peak) than a more planar shear joint. (A
series of shear tests using model materials of different strengths to simulate test dimensions
ranging from 74 to 96 ft, revealed that the peak strength for rough joints was reached after
a displacement of approximately 1 per cent of the test length, throughout this range of
dimensions—BARTON [14].)

The normal or vertical displacement accompanying shear of rough joints is of course
considerable. It will be noted from Figs 9 and 10 that most of the total dilation takes place
after peak strength is reached. In fact no total dilation is necessary for peak shear strength to
be reached under the two highest normal stresses. The dilatency effect is still operating but
some contraction occurs after a small horizontal displacement. This can be interpreted as
increased interlocking of the mating asperities. At prototype scale the peak shear strength
is mobilized after a dilation of less then 2} in. for all but the two lowest normal stresses.
Note that the maximum angle of dilation (d,/d;) occurs approximately at the instant when
peak strength is mobilized. This observation forms the basis of a peak-strength criterion for
rock joints (BARTON [14]).
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FiG. 10. The relationship between shear strength and normal displacement for primary tension joints in
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Stress dependence of pre-peak and post-peak displacements

It is probably true to say that post-peak shear displacements are, by their very nature,
of more interest to the mining industry, than to civil engineers involved in surface excava-
tions. It must be seldom that post-peak behaviour can be tolerated in engineering structures,
whereas large shear displacements and tension cracks are accepted as partners to high
ore-waste ratios in open cast mines.

Krsmanovic [16] presented shear-strength envelopes for rock joints plotted to a common
displacement, to demonstrate the post-peak shear strength remaining after a given total
displacement. This is clearly of interest and the same procedure has been adopted here in
Fig. 11 for the model tension joints. The inverted curvature of the envelopes is also demon-
strated by some of Krsmanovic’s results, although it is unusual for the peak envelope.
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FiG. 12. The pre-peak shear-strength behaviour of primary tension joints in model material C3, at low normal
stresses.

From an engineering point of view the pre-peak behaviour shown in Fig. 12 is of more
immediate interest. It demonstrates the simple yet unexpected result that a joint has no
strength until displaced slightly. This lends support to the rock bolt adage: “help the rock
to help itself”. The lowest curve represents the shear strength mobilized for a common
displacement of 24 in. at prototype scale. This displacement mobilizes only about 10 per
cent of the peak shear strength when the normal stress is over 300 1bf/in?, but over 30 per
cent at lower stresses.

STIFFNESS OF MODEL JOINTS

The ‘stiffness’ of a rock joint is a term of relatively recent origin and is used to describe
the overall stress—deformation characteristic; both in the normal and tangential sense. It is
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becoming widely used in finite-element models of jointed rock. In its simplest form essen-
tially two components are considered (GOODMAN ef al. [1]). The normal stiffness is defined
as the normal stress per unit closure of the joint, and the shear stiffness is the mean gradient
of the shear stress—shear displacement curve, taken up to the point of peak strength. Both
have units of 1bf/in? per in. If a ‘failure analysis’ is being performed a residual shear stiffness
may also be used.

The use of these three deformation components in finite-element analyses has preceded
the more recent attempts to model strain softening characteristics more fully, such as those
reported by ZIENKIEWICZ et al. [3].

Normal stiffness of model tension joints

Numerous in situ plate-jacking tests have indicated that the E-modulus of a rock mass
may be as much as an order of magnitude less than the modulus measured from tests on
unjointed laboratory specimens. This is because the normal stiffness of joints is generally
considerably lower than that of the intact rock separating the joints, depending of course
upon the joint spacing. It is of interest to see how the jointed model fits this general
observation.

Normal loading and unloading tests were carried out in the same shear box that was used
for the shear tests. However, only the normal loading system was used. The joint dimensions
were also identical to those tested in shear and represented prototype joint surfaces of
96 x 42 ft.
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FiG. 13. The effect of normal stress cycles on the closure of primary tension joints in model material C3.
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It can be seen from Fig. 13 that a datum normal stress of 0-301bf/in? was applied through-
out. This was unavoidable since the vertical displacement and loading systems had to be
applied via a light platen and loading yoke. These could not be removed between the normal
load cycles without disturbing the joints. The results shown are the mean of tests on three
model joints generated in model material C3. Similar results were obtained for secondary
joints, and for primary joints in a weaker model material.

The first cycle of loading at each stress level produced a large and more or less irrecover-
able closure of the joints. The load was applied for several minutes to preconsolidate the
joints, though in fact this proved unnecessary since the final deformation was immediately
registered. The load was then reduced to the datum and carefully reapplied to produce an
approximate stiffness line. The joint closures presented in Fig. 13 have been corrected for the
elastic displacements predicted for the solid material above and below the joint in the loading
box. It should be noted that the maximum normal stress applied (5-07 1bf/in?) is approxi-
mately one-quarter of the unconfined compression strength of the intact material.

Table 3 summarizes the model normal stiffness results and gives the prototype equivalents
predicted from geometric and stress scales of 1:500 and 1:666 respectively. The conversion
factor between model and prototype is the ratio (4/A).

TABLE 3. MODEL-PROTOTYPE NORMAL STIFFNESS AS A FUNCTION OF CONSOLI-
DATION STRESS

Consolidation stress Normal stiffness K,
(Ibf/in?) (Ibf/in?/in)
Model Prototype Model Prototype
0-774 516 1-54 x 10¢ 2-04 x 10%
1-249 832 1-09 x 10* 1-45 x 10*
1-726 1150 0-53 x 10* 0:-70 x 10*
2-201 1468 0-76 x 10* 1-01 x 10*
5-067 3377 0-93 x 10* 1:23 x 10*

It can be seen that the normal stiffness under intermediate stresses is smaller than that of
both lower and higher stress levels. This unexpected trend is shown in Fig. 14 (a). A mech-
anism of ‘normal failure’ seems to be required to explain it.

The first cycle of loading at each stress level consolidates the joints causing mostly irre-
coverable closure appropriate to the stress level applied. This constitutes a loading history,
thereby colouring subsequent behaviour just as would be expected in the field. The anomalous
result for intermediate stress levels is perhaps due to the interaction of three modes of
deformation.

1. Small elastic displacements at low stress causing stiff behaviour.
2. Loosening and slight rolling of particles on the asperity slopes at intermediate stress.
3. Large increases in true contact area at high stress causing restiffening.

Comparison with normal stiffness of rock masses

A large number of plate-jacking tests are reported in rock mechanics literature. These are
most commonly performed at dam sites in an attempt to obtain a deformation modulus for
the rock mass, for comparison with the E-modulus of the concrete dam. Due to the com-
plexity of the jointing and the uncertain nature of the normal stress distribution, it is almost
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impossible to estimate the deformation performance of one joint set. Consequently al-
though much data exists concerning the ratio (Ey s/ Eintact) the actual normal stiffness value
is missing.

However, attention has recently been focused on the possible influence of the state of
stress on the joint water flow in rock masses. Several authors have considered this problem
and it is to be hoped that some much needed information on joint normal stiffness will
ensue, both for this problem and the more general finite element simulation of rock masses.

Some useful data on plate-bearing tests that were performed during a comprehensive
series of in situ tests at a French dam site have been given by Louis [17]. The dam was con-
structed on more or less horizontally bedded limestone with conveniently regular systems
of discontinuities. Many of these were found to contain thin seams of sandy marl. A com-
parison of the deformation performance of the joints with laboratory tests on the intact
limestone showed the following approximate results:

Rock mass E,, = 710,000 1bf/in?
Intact rock E; = 7,100,000 1bf/in?

The in situ loading tests were performed perpendicular to the bedding joints, which had
a mean spacing of approximately 24 in. Knowing the spacing it is possible to estimate the
normal stiffness of individual bedding joints from the following relation:

K,.L }

()

E,/E; = [mi

where

E, is the deformation modulus of the rock mass
E, is the deformation modulus of the intact rock
K, is the normal stiffness of individual joints

L is the mean joint spacing.

Substitution of the values given by Louis in the above equation gives the following esti-
mate of normal stiffness:
K, = 3-34 x 10* 1bf/in?/in.

The dimension of intact limestone with the same normal stiffness as one average joint is
equal to the ratio (E;/K,) = 17-7 ft.

These calculations will now be applied to the model joints for comparison. The model
and prototype values of (E;) are 1-:07 x 10* and 7-13 x 10° 1bf/in? respectively. (The
similarity with the E-modulus of limestone is entirely fortuitous.)

TABLE 4. DIMENSION OF INTACT MATERIAL WITH EQUAL STIFFNESS TO ONE
MODEL JOINT

Model Prototype
Normal stress E,/K, Normal stress E;/K,
(Ibf/in?) (in.) (Ibf/in?) (in.) (ft)
0-774 0-70 516 350 29
1-249 0-99 832 492 41
1726 2-02 1150 1013 84
2-201 1-41 1468 706 59

5-067 1-15 3377 578 48
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It is not known at what stress the in situ tests were performed. However, it would seem very
unlikely to have been as high as even the lowest prototype stress (516 1bf/in?). In view of the
trend shown in Fig. 14 (a), the model would appear to produce a prototype stiffness quite
close to that of the limestone, when interpreted at a lower and more relevant normal stress.

The ratio of (E,/E,) can also be calculated for the jointed model by doing the previous
calculations in reverse. Since this ratio is a dimensionless number both model, prototype
and reality should all have the same ratios for correct scaling to be achieved. For simplicity
only one set of parallel joints will be considered. Equation (1) gives the following ratios of
(E,,/E;) based on a model-prototype joint spacing of & in/20-8 ft.

1/2-4, 1/3-0, 1/5-0, 1/3-8, 1/3-3.

These values are for the five normal stresses (preconsolidation stresses) listed in Table 4.

The results of in situ measurements carried out at several dam sites in the U.S.A. were
the subject of a recent study by CooN and MERRITT [18]. The majority of tests on gneisses,
limestones and sandstones gave values of (£,/E;) within the range 1/10-1/2-5. The model
joint spacing is therefore seen to give quite representative values,and by decreasing it to }in.
or increasing it to 1 in. the complete range can be obtained.

The anomalous nature of the model-prototype results shown in Fig. 14 (a) has already
been referred to. For some reason the normal stiffness appears to reduce to some minimum
value with increasing stress, and consequently to rise as the joint becomes more closed at
high stress. Coon and Merritt show a load-deformation curve obtained from a plate-jacking
test in which the apparent stiffness is shown to reduce with increasing normal stress over
the range 500-1000 1bf/in?. They concede that the modulus may increase or decrease with
increasing stress levels. However, it seems certain that any joint containing a thin layer of
clay would demonstrate a stiffening behaviour with increasing levels of stress. Perhaps this
intuitive observation cannot be applied to predict the stiffness behaviour of unweathered
joints. Obviously there is much to be learnt about the mechanism of joint closure.

Shear stiffness of model tension joints

The shear stiffness of a joint was defined as the ratio of the peak shear stress to the shear
displacement at this peak. It may have been noticed from Fig. 9 that there was no marked
increase in peak shear displacement with increasing levels of normal stress. For this reason
onewould expect considerable variation in shearstiffness for different levels of normal stress.

Table 5 shows the mean shear stiffness for the three types of tension joint generated in
material C3 (see inset to Fig. 8). Model stiffness is shown scaled up to the prototype stiff-
ness in the right-hand columns.

The mean trend demonstrated by the primary and primary cross-jointed surfaces is
shown in Fig. 14 (b) at prototype scale. As plotted there is a close relationship between the
shape of this curve and the peak shear-strength envelope (Fig. 7). This is a direct result of the
limited dependence of peak displacement on the level of normal stress.

Figure 14 (c) shows the mean ratio of normal to shear stiffness as a function of consolid-
ation stress. It is unfortunately impossible to compare the two stiffnesses below a prototype
preconsolidation stress of 500 1bf/in>. However, it would appear from a tentative extra-
polation that the ratio (K,/K;) might rise to between 500 and:IOOO atstress levels appropriate
to near-surface excavations. It therefore seems unquestionable that for unweathered joints
in rock the stiffness in shear is considerably lower than that in the normal direction. A
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TABLE 5. SHEAR STIFENESS OF MODEL AND PROTOTYPE JOINTS

Model Prototype
oy K, 1bf/in?/in a, K, 1bf/in?/in

Ibf/in? Primary PEJ: Secondary Ibf/in? Primary B.CT: Secondary
0-044 7-4 12-0 43-0 29-3 9-8 15-9 57-1
0-168 24-2 17-8 49-0 112 32:2 237 65-4
0-286 18-2 30-0 43-3 191 24-2 40-0 57-8
0-477 310 46-5 637 318 41-3 62-1 84-7
0-668 49-3 51-0 78-8 445 65-8 68-0 105
0-954 84-0 77-5 123 635 112 103 164
1:620 102 96-2 112 1080 135 128 149
2-383 100 130 — 1589 133 172 —

N.B. No specimens of secondary joints were available for tests at the highest normal stress due to
damage while handling them.

difference of two to three orders of magnitude appears a reasonable estimate for rough
joints. These differences might be reversed by planar clay-filled joints.

Comparison with shear stiffness of rock mass

A cursory glance at the results of direct shear tests on rock joints leads one to believe that
the model stiffnesses just presented are unrealistically low. As an example; the tests conduc-
ted by Pentz on natural joints in porphyry (referred to by GOODMAN et al. [1], and GOODMAN
[15]) gave the following typical results:

Normal stress = 895 1bf/in?
Peak shear stress = 881 Ibf/in?
Displacement at peak = 0-26 in.

These figures imply a shear stiffness of 3450 Ibf/in?/in for a joint approximately 9 in. square
in area. By comparison, the model joints predict a shear stiffness of 125 Ibf/in?/in for a
96 x 42 ft prototype joint at the same normal stress. This anomaly is not poor scaling but a
simple demonstration of an important scale effect which does not appear to have been
recognized.

A series of model shear tests have been described elsewhere (BARTON [6, 14]) in which an
attempt was made to investigate whether a strength-size effect existed for joints. Model
materials of widely different strengths ranging from approximately 10 to 120 1bf/in? in
unconfined compression were used in the investigation. Tension joints were generated
through the same size of block in each case, to produce joints of dimensions 2-3 x 1-0 in.
as described earlier. However, since the joints were generated in different strengths of
material, a simple dimensionless relationship could be used to convert the model tests to
prototype joints having the same compressive strength but different test dimensions. The
following table describes the properties of the four materials which were all manufactured
from the same components: red lead-sand/ballotini-plaster-water. Different quantities
of the cementing components were used to obtain the different strengths.



596 N. R. BARTON

TABLE 6. MODEL~PROTOTYPE SCALING OF FOUR MATERIALS

Protoytpe
Model o P Prototype o,
material (Ibf/in?) (Ibf/ft3) A ] size (ft) (Ibf/in?)
C2 10-2 120-7 500 666 96-0 X 42:0 )
Cc4 562 120-8 91 121 17:5 x 7°5 6800
9 888 117-4 56 77 10-7 x 4:7 (Ibf/in?)
C25 119-0 1087 38:6 57 74 X 32
Here

o, is the unconfined compressive strength
p is the density

A is the geometric scale

J is the stress scale.

Each of the four models were tested at a different range of normal stress such that when
these were converted to prototype stresses, the range for all four was the same and approxi-
mately 10-1600 1bf/in?. The results of the strength-size investigation in fact proved to be
negative; no scale effect was found.

The feature which did not prove negative was the discovery of a displacement-size effect,
which has an important bearing on the present stiffness investigation. The peak shear dis-
placements for the four sizes of prototype joint surfaces were as follows:

TABLE 7
Size (ft) Peak shear displacements (in.)
96-0 x 420 3-35-11-61
175 % “T§ 0-54- 2-37
10:7 X 4-7 0-35- 0-91
74 x 32 0-34- 1-05

As a result of the negligible strength-size effect, large differences in shear stiffness are
predicted for the four test dimensions. These results are plotted in Fig. 15, together with
relevant stiffness data for tests on rock joints that were mostly obtained from GOODMAN's
comprehensive review article [15]. Each model-prototype value is the mean of two shear
tests at the same normal stress.

The test dimensions L (in.) was the square root of the test area reported by Goodman. In
other words a square test area was assumed unless more specific data was available, as with
the model joints, The stiffness data for the laboratory tests was obtained from reported
tests on clean unfilled rock joints where possible. However, an unforunate but inevitable
feature of joint shear testing is that generally only difficult zones are tested, such as shear
zones, clay-filled joints, planes of schistocity and so on. As a result it is difficult to collect a
large body of data relevant specifically to clean unfilled joints, The data presented in Fig. 15
can be identified from Table 8. All but two of the sources were obtained from Goobp-
MAN [15].
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Fi1G. 15. Joint shear stiffness as a function of test dimensions and preconsolidation stress.

Four lines are drawn in Fig. 15 which span the model-prototype test results. These are
marked 25, 100, 500 and 1000 and they are approximate envelopes for equal normal stress
with units of 1bf/in?. Because of the scatter of results it was not feasible to extrapolate these
lines into the laboratory test range. However, some of the large in situ test results do lie
in the correct zone (Kujundzic, 88 in.), while others clearly do not. Two additional features
are worthy of mention:

1. Krsmanovic’s tests on rough and smooth unfilled fractures (15-8 in.) show values
of shear stiffness which, with one exception, separate clearly into two groups. The
mean stiffness for the rough joints is approximately five times as high as for the
smooth.

2. The large number of model-prototype results plotted along the test dimension 1150
in. (96 x 42 ft) are the combined results for primary joints in materials C2 and C3
which had prototype unconfined compression strengths of 6800 and 13,400 Ibf/in?
respectively. The range of stiffness values are much the same for each. This is
because the shear strength of C2 is slightly lower than that of C3, and at the same
time, the peak displacements for the weaker material are also a little lower.

Optimum test dimension for stiffness data
An all-important question now arises. What size of test should be performed to obtain
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TABLE 8. TEST DATA FOR SHEAR TESTS ON ROCK JOINTS

Test dimensions Normal stress
Source Description of joints (in.) (Ibf/in?)
Coyne and Limestone: dry marly joints 2-2-2-17 71-213
Bellier Thickness of seams: 0-020-0-080 in.
De Freitas Granite: rough dry joint from 4-7-5-7 170-206
breaking beam
Pentz Porphyry: dry natural joint surfaces 8-8 (approx.) 469-1450
Coyne and Limestone: compact (oolitic) 94 71
Bellier Limestone: stylotite (oolitic) 9-4 71
Giuseppe [20]  Phyllitic schist: foliation planes 12 (approx.) 28-4-213
Krsmanovic Limestone: rough unfilled fractures 15-8 220-579
Limestone: smooth unfilled fractures 15-8 128-340
Drozd Greywacke: closed clean bedding 23-8 62-5
Amphibolite: schistocity plane 23-8 177
Kujundzic Closely jointed shale zone in 88 2-8-3-0
limestone
Ruiz and Unbonded contact between basalt 218 18:2
Camargo and sandstone
Ruiz et al. [19] Contact between compact basalt 233 24
and breccia

stiffness data for a given size of field problem? Even with the benefit of the data displayed
in Fig. 15 the decision is obviously fraught with uncertainty. It must be fair to say that the
testing of a large area in situ will always give a more reliable result since, with careful control,
the in situ conditions can be most easily maintained. This will be particularly true of joints
containing soft infilling. However, in view of the expense of large numbers of in situ tests,
there may be good reason to rely on the results of larger numbers of carefully sampled
laboratory tests (6-12 in.), if the joints appear tightly closed and not unduly altered by
weathering. The results obtained for shear stiffness will be strictly relevant to the test
dimension, no larger or smaller, unless the joint exposures in the field display singular
planarity like cleavage or foliation surfaces. However, if there appear to be several ampli-
tudes (and wavelengths) of roughness depending upon the area of joint surveyed, then the
guide lines exhibited by Fig. 15 may be very useful.

It will be noticed that the four equal stress lines for the model-prototype data are more
or less parallel with the upper envelope. (The lower envelope is not similarly inclined,
because of the discrepancy between the very low normal stress applied in some of the in situ
tests, and the much higher stresses used in many of the laboratory tests.) The revealing fea-
ture of these equal stress lines is that they suggest an inverse proportionality between test
dimension and shear stiffness. In other words for a given normal stress, a shear stiffness of
10,000 1bf/in?/in obtained from a 10-in.long laboratory specimen, would need to be reduced
to 100 1bf/in?/in if a dam abutment was loading a 1000-in. length of joint in the field
problem.
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The normal stiffness probably presents less critical problems of measurement. According
to the limited results presented earlier, the normal stiffness of one joint ranges from approxi-
mately the same order of magnitude to one order of magnitude less than the elastic normal
stiffness of the intact rock between the joints. For example, a rock having an intact (E)
modulus of 7 x 10° 1bf/in? will have normal block stiffnesses—ranging from 350,000 to
35,000 1bf/in?/in for joint spacings of 20 and 200 in. respectively. The lower value of stiff-
ness corresponds to the normal stiffness obtained from the in situ test in limestone, and the
model-prototype values when projected to an engineering range of stresses. Both normal
stiffness components can therefore be considered as much less critical to the total deform-
ation than the shear stiffness, and small errors in the measurement of either of them will
be negligible compared to ignorance of the size effect for shear stiffness. (These generali-
zations cannot be applied to joints containing a significant thickness of soft infilling
material.)

It has been noted by SNow [21] that the normal deformation modulus of fractured rocks
depends in part upon the size of sample. Plate-jacking tests give smaller moduli than labora-
tory tests, and chamber-pressure tests smaller still. It appears that the joint water-boundary
conditions will also have some effect. The modulus will be lower if joint water pressure can be
dissipated at the water table, than if fully confined.

While these effects are irrefutable, they would appear to be purely a function of sampling
size; larger tests reach more major joints and vice versa. In view of the extreme importance
of shear and normal stiffness data to numerical and physical modelling, what is most desir-
able is to conduct cyclic normal stiffness tests on specific single-jointed samples before the
latter are tested in shear at the same normal stress. (It appears to be very important not to
preconsolidate a joint, and then shear it at a lower normal stress. A significant artificial
increase in shear strength, and hence shear stiffness, may be registered—see BARTON [6].)
If the above procedures are adopted and the joint sampling is representative, any possible
normal stiffness-size effect will be minimized.

Requirements for numerical simulation of rock-joint deformation

It has been shown that for relatively wide joint spacing the normal stiffness of the joints
may be roughly the same order of magnitude as the elastic normal stiffness of the inter-
vening intact rock. This comparison will now be extended to shear stiffness.

The elastic shear modulus (x) is related to the normal modulus (E) as follows:

E

P00 L @

where v is Poisson’s ratio of the rock. A typical value for the latter is 0-2, and taking the
same E-modulus of 7 x 10° Ibf/in? the shear modulus is found to be approximately
3 % 10° Ibffin?. The elastic shear stiffness of the intact rock between joints spaced at 20 and
200 in. will therefore be 150,000 and 15,000 1bf/in?/in respectively. Even the lowest of these
two values can be as much as three orders of magnitude stiffer in shear than one 100-ft
long joint, according to the stiffness-size effect illustrated in Fig. 15.

It would therefore appear conclusive that a numerical analysis of jointed rock that incor-
porated only the elastic stiffnesses of the intact rock would give quite meaningless results
unless it could be established that the jointing was sporadic and non-continuous, or that the
in situ stresses were so high that existing joints remained tightly closed in spite of disturb-
ance by excavation.
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It has been shown by ST JOHN [4] and BARTON [6] that an even more inaccurate deform-
ation picture isobtainedif thestiffnesses of the joints are linearly superimposed onthe elastic
properties of the intact rock. Anisotropic elastic continuum analyses of rock-slope behav-
iour using the finite-element method produce grossly exaggerated ‘elastic recovery’ dis-
placements which have no relevance to reality since such large deformations can only be
non-elastic and irrecoverable. It seems unquestionable that shear deformation of joints
is largely irrecoverable, even just up to the development of peak shear strength. The extreme
‘softness’ of joints in shear means that even slight inelasticity here will make the overall
behaviour grossly inelastic in reality.

The present use of line-joint elements for two-dimensional studies (GOODMAN et al. [1],
DuNcaN and GOODMAN [22] and St JoHN [4]) and triangular or quadrilateral-shaped
elements for three-dimensional studies (MAHTAB and GooDMAN [2] and ST Joun [4])
has obviously improved numerical modelling considerably. However, certain problems
seem to have been encountered which may or may not be solved by future improve-
ments in computing methods.

1. The elastic stiffness characteristics of the joint elements should not differ from those
of adjacent solid elements by large amounts or else danger of ill conditioning of the
assembled elastic equations will exist. ZIENKIEWICZ ef al. [3] have suggested that
a ratio of 1:1000 should not in general be exceeded. Despite certain differences in
approach it may be significant that extremely low values of E-modulus tend to be
used in many numerical examples published in the literature. [1,2]. The fact that
joint stresses are insensitive to reductions in E-modulus does not mean that the
overall deformation behaviour is going to be unaffected by unrealistic assumptions.

N

. There appears to be an ever-present problem of non-uniqueness of solution when new
and untried problems are tackled. The only fool-proof solution would be the con-
struction of sophisticated physical models as a check on the numerical solutions.

3. Finite-element modelling of post-peak behaviour of jointed rock is complicated by
the fact that the co-ordinates defining line-joint elements should not become over-
lapped during the modelling of slip on the joints. In extreme cases this may limit the
concentration of the element mesh, such as that chosen to closely define the behav-
iour around an excavation.

4. A fundamental requirement of the finite-element method is the conservation of energy
demanded during computation. It is for this reason that anisotropic continuum analy-
ses predict such an impossibly large ‘elastic recovery’ when simulating excavation
in rock. In reality energy is dissipated in friction and asperity failure along the joints,
and should therefore be ‘dissipated’ in the numerical analyses if they are to be realis-
tic. This will be even more true for post-peak behaviour than pre-peak behaviour.

The “finite difference’ approach adopted by CUNDALL [5] appears to overcome most of
these problems. Cundall has dispensed with the concept of stresses and strains and has
developed a programme which deals with the forces and displacements existing within a
system of discrete blocks. Multiple block models are loaded in any desired manner and the
deformations and mass failure movements resulting from removal of critical blocks (excava-
tion) are plotted by computer for given increments of time. The components of mass de-
formation illustrated include joint consolidation, simple shear, toppling and rotation all
plotted at true scale. These progressive failure plots closely resemble the failures induced by
excavation of slopes in conventional (smooth brick) physical models—see HOFMANN [23].



A MODEL STUDY OF ROCK-JOINT DEFORMATION 601

5. Due to limitations of computer storage and inadequate input data the normal dis-
placement accompanying shear failure of a joint has not been modelled systemati-
cally. Individual joints with teeth have been studied (GOODMAN ef al. [1], ST JOHN
[4]), but the method is unfortunately too uneconomical on computer storage for
application to realistic jointed rock masses.

The omission of dilation effects in numerical and most physical models of jointed rock
is more serious than it may appear. The amount of dilation which occurs before peak
strength is reached may be only a fraction of that occurring on the way to residual strength
if the joint is undulating on a large scale (see Fig. 9). Yet this small pre-peak dilation is
itself orders of magnitude larger than any normal stiffness effects.

When a set of parallel joints in rock are subjected to shearing stresses it is usually anti-
cipated that failure will occur on all the joints that suffer shear stresses in excess of their
peak shear strength at the existing levels of normal stress. However, in a situation with more
or less fixed external boundaries (i.e. underground excavations) considerable increases in
normal stress may accompany the dilation. This being the case major shear displacements
will be inhibited and will only occur on a small number of joints, most likely only on one.
(In soil mechanics terminology the rock mass would be described as ‘denser than critical’
and therefore dilates during shear instead of contracting as might loosely dumped rock fill.)

Joints which are probably exceptions to the ‘dilation during shear’ behaviour are:

(a) smooth cleavage surfaces such as in slates

(b) severely weathered, planar surfaces such as bedding joints

(c) joints near an excavation opened and displaced by blast damage

(d) clay-filled joints of significant thickness.

CONCLUSIONS

In view of all the present difficulties in numerical simulation of jointed rocks, a widespread
move to realistic physical modelling might not be the retrograde step that it has often ap-
peared. The biggest single difficulty in rock mechanics will probably always be the measure-
ment and understanding of relevant input concerning joint characteristics. Numerical
methods can never solve this problem and the relevance of numerical output is completely
dependent on the relevance of the input assumptions. Realistic physical models can contri-
bute something to an understanding of both input and output.
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